{"id":339,"date":"2022-02-14T01:50:56","date_gmt":"2022-02-14T01:50:56","guid":{"rendered":"https:\/\/green-ic.org\/CogniVision\/?page_id=339"},"modified":"2022-02-14T04:00:29","modified_gmt":"2022-02-14T04:00:29","slug":"sub-projects","status":"publish","type":"page","link":"https:\/\/green-ic.org\/CogniVision\/sub-projects\/","title":{"rendered":"SUB-PROJECTS"},"content":{"rendered":"<div class=\"wp-block-ub-content-toggle\" id=\"ub-content-toggle-b18fa649-add9-4b45-a587-09ba5cf659ab\" data-mobilecollapse=\"false\" data-desktopcollapse=\"false\">\n<div class=\"wp-block-ub-content-toggle-accordion\" id=\"ub-content-toggle-panel-block-\">\n <div class=\"wp-block-ub-content-toggle-accordion-title-wrap\"\" aria-controls=\"ub-content-toggle-panel-0-b18fa649-add9-4b45-a587-09ba5cf659ab\" tabindex=\"0\">\n <p class=\"wp-block-ub-content-toggle-accordion-title ub-content-toggle-title-b18fa649-add9-4b45-a587-09ba5cf659ab\">Sub-Project 1:\u00a0System modeling, exploration, integration, demonstration\u00a0of cognitive\/attentive cameras<\/p><div class=\"wp-block-ub-content-toggle-accordion-toggle-wrap right\"><span class=\"wp-block-ub-content-toggle-accordion-state-indicator wp-block-ub-chevron-down open\"><\/span>\n <\/div><\/div><div role=\"region\" aria-expanded=\"true\" class=\"wp-block-ub-content-toggle-accordion-content-wrap\" id=\"ub-content-toggle-panel-0-b18fa649-add9-4b45-a587-09ba5cf659ab\">\n\n<p class=\"has-text-align-justify\">This sub-project addresses the system-level challenges and unifies the efforts of the other sub-projects into a cohesive modelling, design and verification framework. Regarding the system modelling, a high-level simulation framework will be developed and shared among all PIs to evaluate the functionality, the performance and the energy efficiency of individual components, as well as their impact at the system level. Energy per operation will also be modelled using proprietary models, to preliminarily estimate the benefit of each innovative technique before performing time-consuming circuit and architectural design. The same environment will be used to share a common database of benchmarks for quantitative assessment, and to perform experiments in a controlled environment shared by all researchers in the team. Tentatively, the environment will be in OpenCV-Python [OCP] as a compromise between Python\u2019s code readability (as needed in collaborative efforts) and availability of OpenCV libraries (which has also been used by the PIs to generate some preliminary results). Such environment will also be used to generate test vectors for chip testing.<\/p>\n\n\n\n<p class=\"has-text-align-justify\">This sub-project also covers the\u00a0system design, integration and demonstration\u00a0aspects in\u00a0CogniVision, once the above preliminary exploration is performed, and circuit\/architectural\u00a0techniques are investigated and developed for silicon implementation in other sub-projects. System\u00a0integration will be first performed as a System on Board (SoB), assembling the stand-alone chips\u00a0that are generated in the various sub-projects for two silicon rounds. The final demonstration is\u00a0instead performed in the form of a single System on Chip (SoC). Accordingly, chip design\u00a0partitioning and floor plan will be preliminarily performed, and a mixed-signal simulation\/verification\u00a0environment will be developed to verify the design from behavioral down to gate-level and some\u00a0selected circuit simulations, when designs become available over time for the blocks in the\u00a0CogniVision SoC. Also, this sub-project focuses on the\u00a0silicon infrastructure for chip configuration\u00a0and testing, based on the CogniVision chip architecture\u00a0in Fig. D21. Once verified and taped out,\u00a0the CogniVision chip will be fabricated by a commercial silicon foundry (e.g., GlobalFoundries) and\u00a0tested in a real-world environment\u00a0to assure that the ultimate quantitative targets in Table IV are\u00a0achieved. The targeted use cases in this table are well within the capabilities of CogniVision, both\u00a0in terms of memory (2MBs) and throughput (<20,000MOPS).The on-chip microprocessor(tentatively PULPino\u00a0by ETHZ, also team collaborator\u00a0[PLP])\u00a0in Fig. D21 does not affect the\u00a0performance, as it is\u00a0only\u00a0configures\u00a0the accelerators and weights into\u00a0the on-chip memory.<\/p>\n\n<\/div><\/div>\n<\/div>\n\n<div class=\"wp-block-ub-content-toggle\" id=\"ub-content-toggle-460907dd-bcd8-4988-a7bb-cb931688774f\" data-mobilecollapse=\"false\" data-desktopcollapse=\"false\">\n<div class=\"wp-block-ub-content-toggle-accordion\" id=\"ub-content-toggle-panel-block-\">\n <div class=\"wp-block-ub-content-toggle-accordion-title-wrap\"\" aria-controls=\"ub-content-toggle-panel-0-460907dd-bcd8-4988-a7bb-cb931688774f\" tabindex=\"0\">\n <p class=\"wp-block-ub-content-toggle-accordion-title ub-content-toggle-title-460907dd-bcd8-4988-a7bb-cb931688774f\">Sub-Project 2: Energy-centric circuit techniques and interaction at imager-sensemaking and wireless-sensemaking boundary<\/p><div class=\"wp-block-ub-content-toggle-accordion-toggle-wrap right\"><span class=\"wp-block-ub-content-toggle-accordion-state-indicator wp-block-ub-chevron-down open\"><\/span>\n <\/div><\/div><div role=\"region\" aria-expanded=\"true\" class=\"wp-block-ub-content-toggle-accordion-content-wrap\" id=\"ub-content-toggle-panel-0-460907dd-bcd8-4988-a7bb-cb931688774f\">\n\n<p class=\"has-text-align-justify\">In sub-project #2, the interaction of sense making with the image sensor on one side, and the wireless interface on the other side is investigated, according to Fig. D11. From the perspective of the irrelevant activity skipping, imager architectures with in-sensor saliency and relevance table generation will be explored, while systematically taking its interaction with feature extraction into account (Fig. D17). The image sensor will include novelty (the above in-sensor saliency detection circuitry), whereas the pixel and array architecture will be taken from prior designs from Prof. Yeo\u2019s group [CAB08], [WHY12] to de-risk the demonstration, considering that the energy efficiency of the imager is not critical for the system. Also, the wireless communication circuits will be developed while incorporating their interaction with sense making, in particular with the deep network configuration, which is uploaded by the cloud into the on-chip memory for reconfiguration purposes.<\/p>\n\n\n\n<p class=\"has-text-align-justify\">In this sub-project, the image sensor and wireless transceiver are first explored from an architectural point of view. This is followed by two rounds of chip demonstration and testing to first validate the fundamental ideas and translate it into circuits, and then refine the design in preparation for the final System on Chip (SoC) demonstration. In the latter phase, the effort is focused mostly on the fine-tuning and integration with the other blocks in Fig. D21. A characterization of the final prototype will be performed, and correlated with silicon measurements in the two previous versions, evaluating the effect of process\/voltage\/temperature corners.<\/p>\n\n<\/div><\/div>\n<\/div>\n\n<div class=\"wp-block-ub-content-toggle\" id=\"ub-content-toggle-9d752454-6d2f-4518-bf0f-7c3a5e5843da\" data-mobilecollapse=\"false\" data-desktopcollapse=\"false\">\n<div class=\"wp-block-ub-content-toggle-accordion\" id=\"ub-content-toggle-panel-block-\">\n <div class=\"wp-block-ub-content-toggle-accordion-title-wrap\"\" aria-controls=\"ub-content-toggle-panel-0-9d752454-6d2f-4518-bf0f-7c3a5e5843da\" tabindex=\"0\">\n <p class=\"wp-block-ub-content-toggle-accordion-title ub-content-toggle-title-9d752454-6d2f-4518-bf0f-7c3a5e5843da\">Sub-Project 3:\u00a0Energy-centric machine learning-circuit co-design<\/p><div class=\"wp-block-ub-content-toggle-accordion-toggle-wrap right\"><span class=\"wp-block-ub-content-toggle-accordion-state-indicator wp-block-ub-chevron-down open\"><\/span>\n <\/div><\/div><div role=\"region\" aria-expanded=\"true\" class=\"wp-block-ub-content-toggle-accordion-content-wrap\" id=\"ub-content-toggle-panel-0-9d752454-6d2f-4518-bf0f-7c3a5e5843da\">\n\n<p>This sub-project focuses on the algorithm-circuit interaction, through the investigation of a novel class of deep neural networks that will be designed and trained by including power consumption as explicit metric\/cost function, as opposed to conventional machine learning methods focusing on pure accuracy [HVD2015]. Also, a novel class of ultra-efficient deep learning accelerators based on the DDPM modulation (Fig. D12) will be investigated.<\/p>\n\n\n\n<p class=\"has-text-align-justify\"><br>In this sub-project, we investigate systematic energy-aware model design and training schemes, introducing the energy cost within the training objective of the deep learning model. Being circuit\/architecture parameters within the network optimization loop, this creates an interdependence and ultimately a synergy that is of particular interest for this sub-project. At the same time, low-activity SRAM memories will be explored and demonstrated. Machine learning circuit techniques will be explored that smartly allocate energy between training and sense making, adding run-time criteria for early termination of the computation, without incurring further unnecessary energy cost while accuracy is plateauing.<\/p>\n\n\n\n<p class=\"has-text-align-justify\">The developed energy-centric machine learning algorithm-circuit co-design will be validated in terms of accuracy and energy in applications for processing images at the resolution from 1,000×1,000 to 80×80 to assess the scalability of the proposed techniques. The resulting models will be validated and integrated in the final silicon prototype first in a controlled environment, and then in a real-world setting. Benchmarks provided by our project partners (see letters of support from agencies) will be used to this purpose, covering human and object recognition, in addition to the popular AlexNet benchmark (Table IV).<\/p>\n\n<\/div><\/div>\n<\/div>\n\n<div class=\"wp-block-ub-content-toggle\" id=\"ub-content-toggle-cd49a555-9c9e-4282-a709-52006450a8f3\" data-mobilecollapse=\"false\" data-desktopcollapse=\"false\">\n<div class=\"wp-block-ub-content-toggle-accordion\" id=\"ub-content-toggle-panel-block-\">\n <div class=\"wp-block-ub-content-toggle-accordion-title-wrap\"\" aria-controls=\"ub-content-toggle-panel-0-cd49a555-9c9e-4282-a709-52006450a8f3\" tabindex=\"0\">\n <p class=\"wp-block-ub-content-toggle-accordion-title ub-content-toggle-title-cd49a555-9c9e-4282-a709-52006450a8f3\">Sub-Project 4: Irrelevant activity skipping\/EQ-scalable sensemaking circuits\/architectures<\/p><div class=\"wp-block-ub-content-toggle-accordion-toggle-wrap right\"><span class=\"wp-block-ub-content-toggle-accordion-state-indicator wp-block-ub-chevron-down open\"><\/span>\n <\/div><\/div><div role=\"region\" aria-expanded=\"true\" class=\"wp-block-ub-content-toggle-accordion-content-wrap\" id=\"ub-content-toggle-panel-0-cd49a555-9c9e-4282-a709-52006450a8f3\">\n\n<p class=\"has-text-align-justify\">This sub-project focuses on the circuit and architectural implications on the sensemaking of the three research directions in Fig. D11. Regarding the irrelevant activity skipping, the processing elements in Fig. D17-D21 will be organized both logically (architecture) and physically (floorplan) in a regular fashion that maps the imager tiles (see sub-project #2) onto the sub-systems that perform the corresponding computation. To this aim, novel chip design methodologies pursuing vertical integration from physical level to architecture will be developed in this sub-project, with the goal of assuring data locality (to limit the large energy cost of signal distribution) and maximizing the reuse of memory accesses (to limit the large energy cost of multiple accesses to the same memory address). In regard to the energy-quality scalability, this novel capability will be introduced in all components of the SoC. The fundamental vision algorithm parameters will be evaluated as primary candidates for being used as energy-quality knobs, and their impact on energy and quality will be preliminarily assessed through high-level simulations (e.g., OpenCV [OCP]).<\/p>\n\n\n\n<p class=\"has-text-align-justify\">Also, this sub-project involves the translation of the expected research results into measurable chip demonstrators of saliency pre-assessment, feature extraction, novelty assessment, and deep learning in Fig. D17. These circuits are designed and tested in two rounds, respectively for initial validation and further refinement. The very final version of their design will be integrated in the final System on Chip (SoC) demonstration, and its characterization will be again cross-correlated with the silicon measurements in the two previous versions, evaluating the effect of process\/voltage\/temperature corners and in both a controlled and real-world environment.<\/p>\n\n<\/div><\/div>\n<\/div>","protected":false},"excerpt":{"rendered":"","protected":false},"author":2,"featured_media":0,"parent":0,"menu_order":0,"comment_status":"closed","ping_status":"open","template":"","meta":{"nf_dc_page":"","om_disable_all_campaigns":false,"ub_ctt_via":"","_monsterinsights_skip_tracking":false,"_monsterinsights_sitenote_active":false,"_monsterinsights_sitenote_note":"","_monsterinsights_sitenote_category":0,"footnotes":""},"class_list":["post-339","page","type-page","status-publish","hentry"],"featured_image_src":null,"jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/pages\/339","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/comments?post=339"}],"version-history":[{"count":4,"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/pages\/339\/revisions"}],"predecessor-version":[{"id":374,"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/pages\/339\/revisions\/374"}],"wp:attachment":[{"href":"https:\/\/green-ic.org\/CogniVision\/wp-json\/wp\/v2\/media?parent=339"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}